Fasten Your Safety Belts: Turbulent Flows in Nature

Michael Barnes Rudolf Peierls Centre for Theoretical Physics University of Oxford

Thanks to Alex Schekochihin

Turbulence is ubiquitous

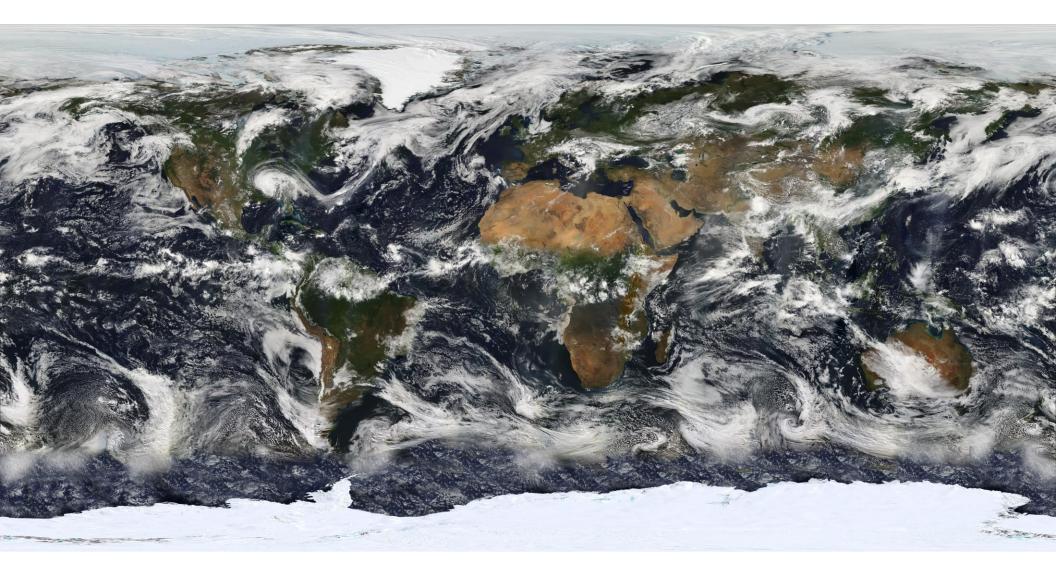
Carina Nebula

Credit: NASA, ESA, N. Smith (UC-Berkeley) and the Hubble Heritage Team

Turbulence is ubiquitous

Surface of the sun Credit: NASA/SDO/Goddard Space Flight Center/Joy Ng

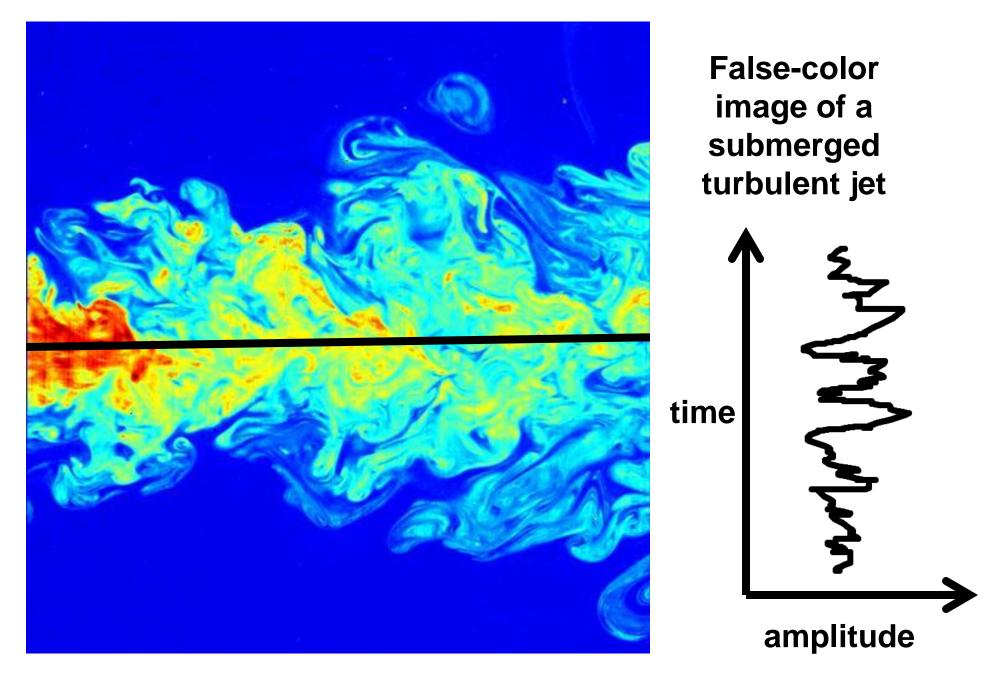
Turbulence is ubiquitous



Earth's atmosphere

Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

Turbulent flow is irregular



Credit: C. Fukushima and J. Westerweel, Technical University of Delft, Netherlands

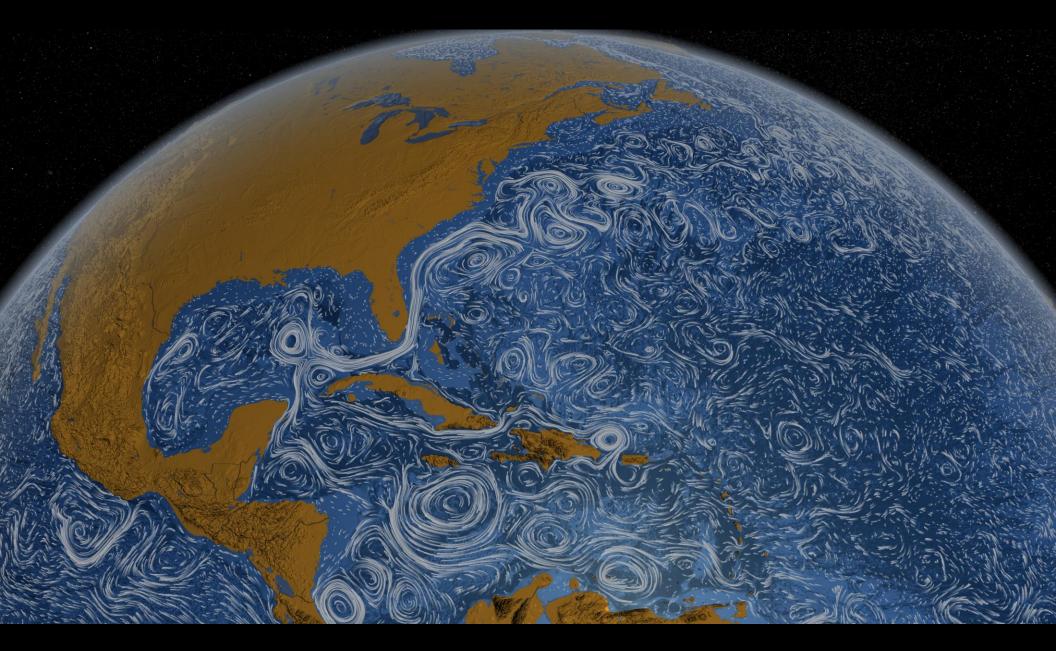
Turbulent flow enhances mixing

Credit: Connie Ma via flickr

Turbulence is rotational

Credit: NASA Langley Research Center

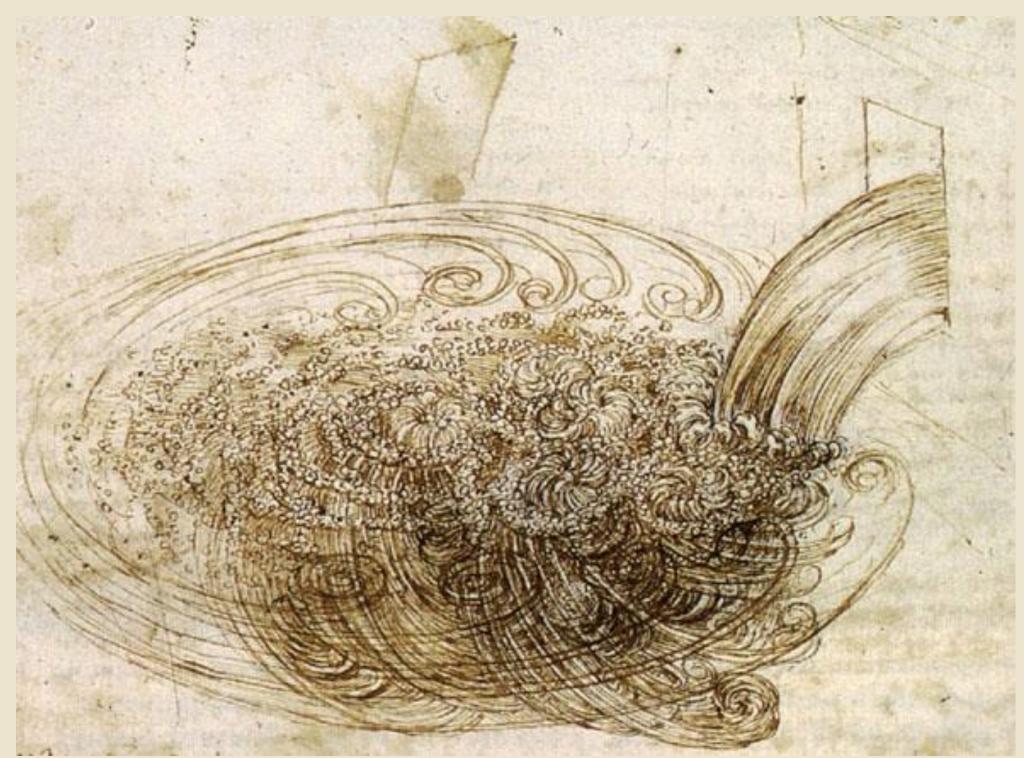
Turbulence spans many space-time scales



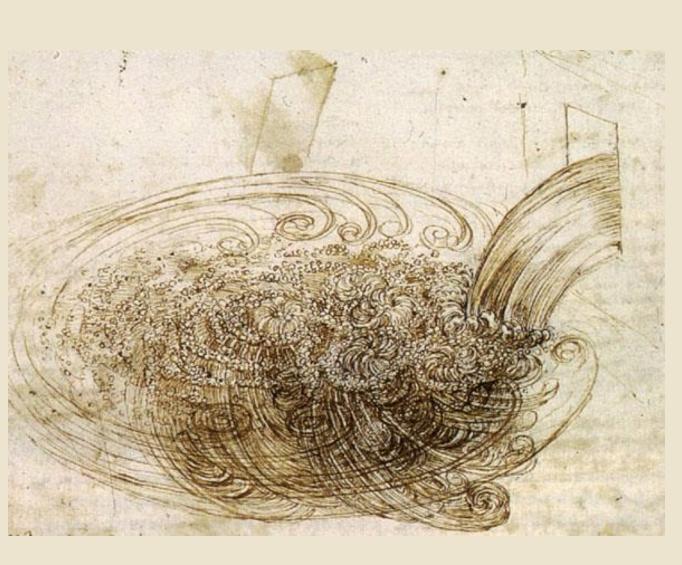
Ocean currents

Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

Leonardo da Vinci and 'la turbolenza'



Leonardo da Vinci and 'la turbolenza'



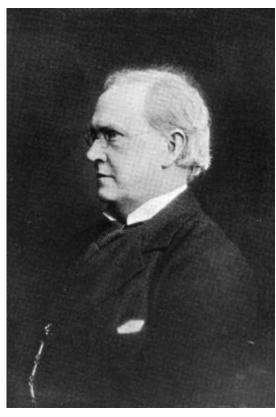
"Observe the motion of the surface of the water, how it resembles that of hair, which has two *motions – one* depends on the weight of the hair, the other on the direction of the curls; thus the water forms whirling eddies, one part following the *impetus of the chief* current, and the other following the incidental motion and return flow."

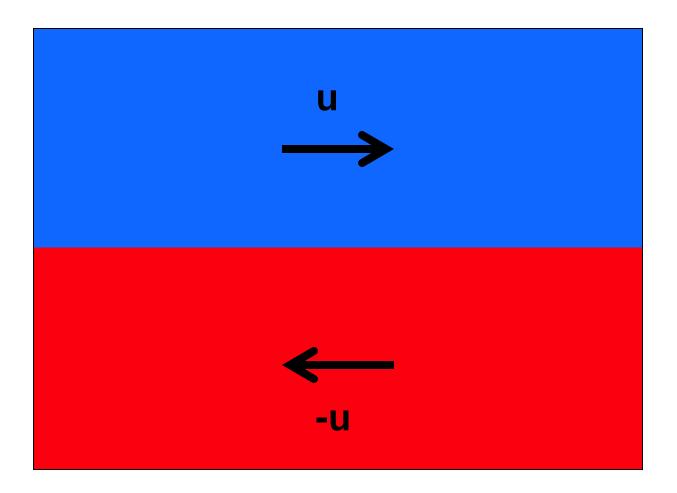
Words of encouragement

Sir Horace Lamb (1904)

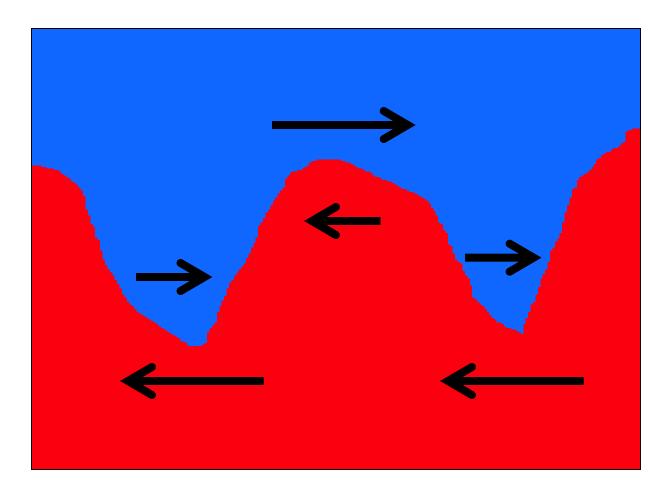
"When I meet God, I am going to ask him two questions: Why relativity? And why turbulence? I really believe he will have an answer for the first."

> Werner Heisenberg (1933), German Federal Archives

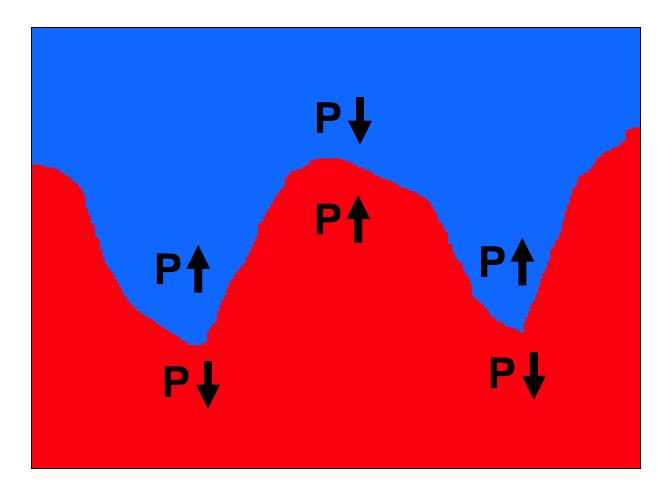




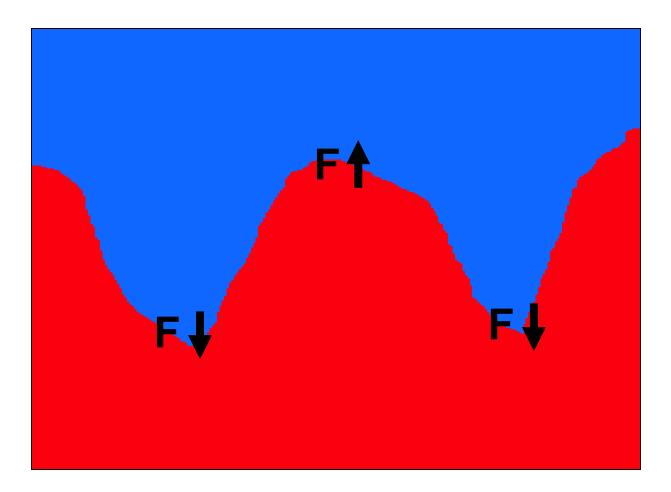
Two fluids with a sharp change in velocity at their interface



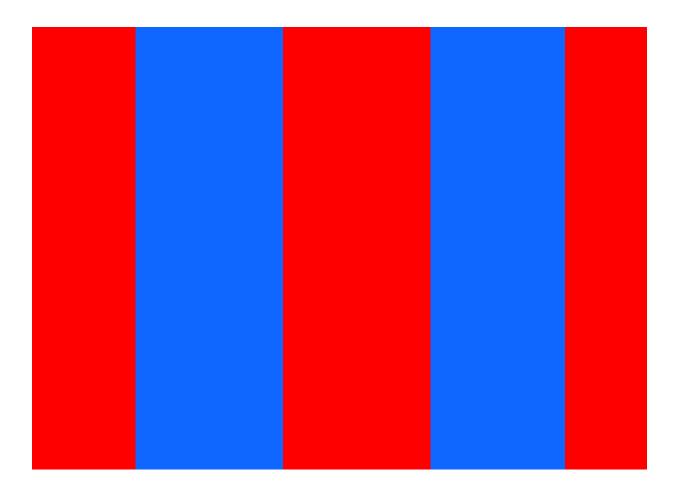
Conservation of mass → mass flow rate constant
→ Flow speed inversely proportional to flow area



Conservation of energy a.k.a. Bernoulli's Principle → change in mean kinetic energy offset by change in thermal energy (pressure)



Pressure difference leads to net force that reinforces the initial perturbation \rightarrow instability (Kelvin-Helmholtz)



Instability leads to new 'equilibrium' that itself is unstable, which leads to new 'equilibrium'...

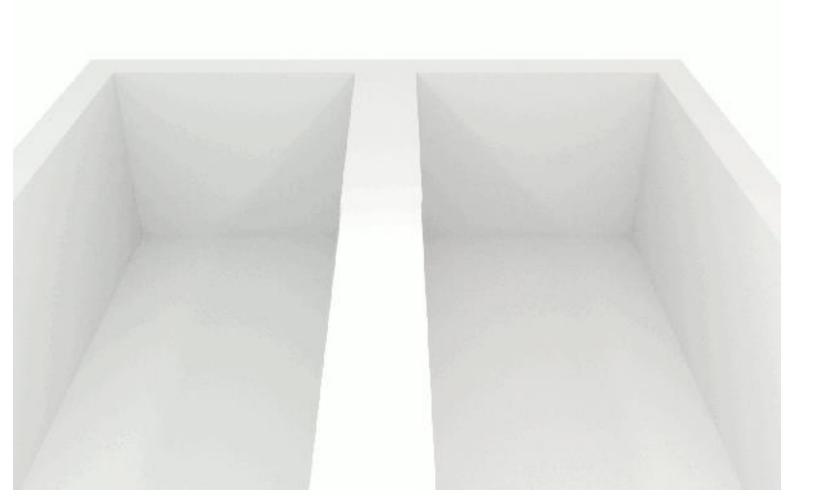
Transition to turbulence

K-H clouds Credit: Brocken Inaglory

K-H Saturn Credit: NASA

V. Van Gogh, *The Starry Night (*MoMa, NY)

Viscosity and the Reynolds number



Credit: Synapcticrelay via commons.wikim edia.org

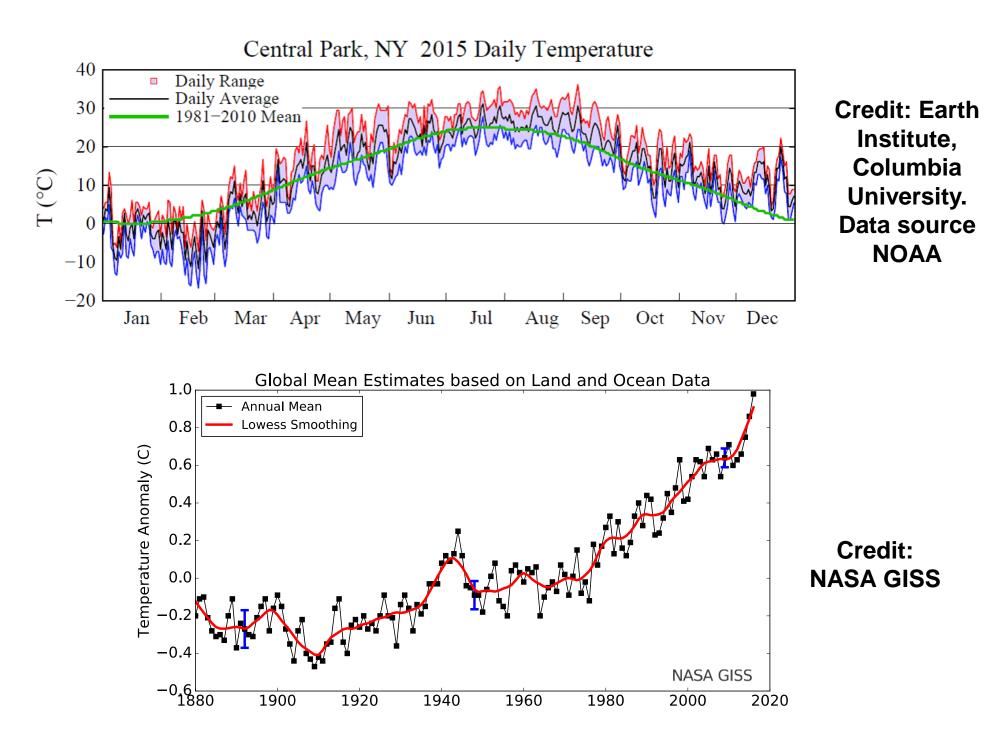
 $\operatorname{Re} \doteq \frac{UL}{\nu} = \frac{\text{inertial forces}}{\text{viscous forces}}$

What we can say exactly about turbulence

What we can say exactly about turbulence

Turbulence is irregular and multiscale

Statistical description of turbulence



Statistical description of turbulence

$$\frac{d\mathbf{u}}{dt} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$
$$\mathbf{u} \doteq \overline{\mathbf{u}} + \delta \mathbf{u} \qquad \overline{\delta \mathbf{u}} = 0$$
$$\frac{d\mathbf{u}}{dt} = \frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u}$$
$$\overline{\frac{d\mathbf{u}}{dt}} = \frac{\partial \overline{\mathbf{u}}}{\partial t} + \overline{\mathbf{u}} \cdot \nabla \overline{\mathbf{u}} + \overline{\delta \mathbf{u}} \cdot \nabla \delta \mathbf{u}$$

Need $\overline{\delta u \delta u}$ to get \overline{u} . But $\overline{\delta u \delta u}$ requires $\overline{\delta u \delta u \delta u}$.

Energy balance in turbulence

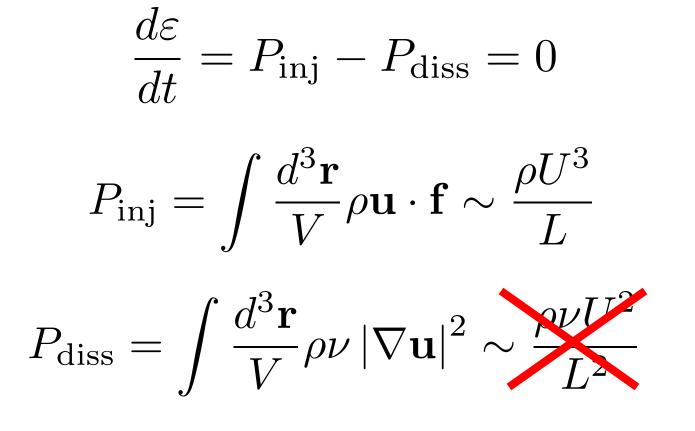
$$\mathbf{u} \cdot \left(\frac{d\mathbf{u}}{dt} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u} + \mathbf{f}\right)$$

$$\Rightarrow \frac{d\varepsilon}{dt} = P_{\rm inj} - P_{\rm diss}$$

$$\varepsilon = \frac{1}{2} \int \frac{d^3 \mathbf{r}}{V} \rho u^2 \qquad P_{\text{inj}} = \int \frac{d^3 \mathbf{r}}{V} \rho \mathbf{u} \cdot \mathbf{f}$$

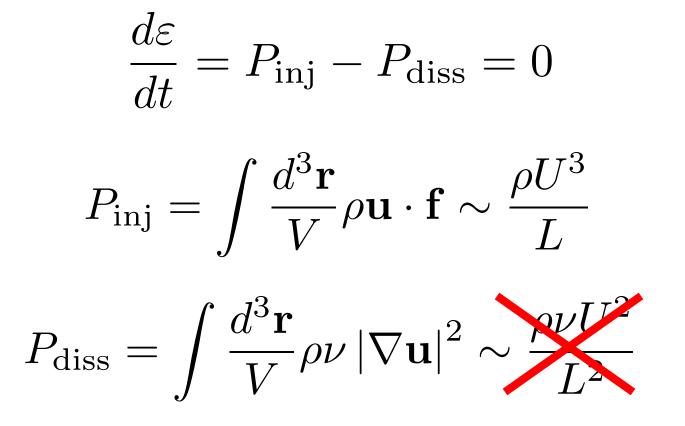
$$P_{\rm diss} = \int \frac{d^3 \mathbf{r}}{V} \rho \nu \left| \nabla \mathbf{u} \right|^2$$

Energy balance in steady-state turbulence



 $\Rightarrow \frac{P_{\rm inj}}{P_{\rm diss}} \sim \frac{UL}{\nu} = {\rm Re} \gg 1 \longleftarrow {\rm Imbalance!}$

Energy balance in steady-state turbulence



Turbulence must create small scales to overcome imbalance!

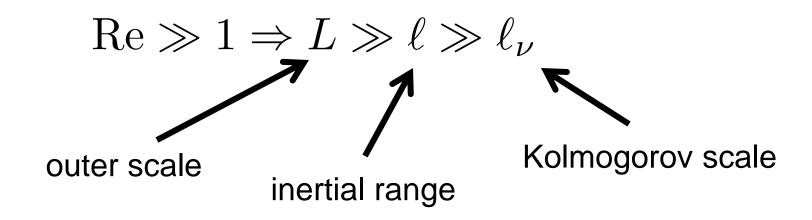
Energy balance in steady-state turbulence

$$\frac{d\varepsilon}{dt} = P_{\rm inj} - P_{\rm diss} = 0$$

At what scale is balance achieved?

Dimensional analysis:

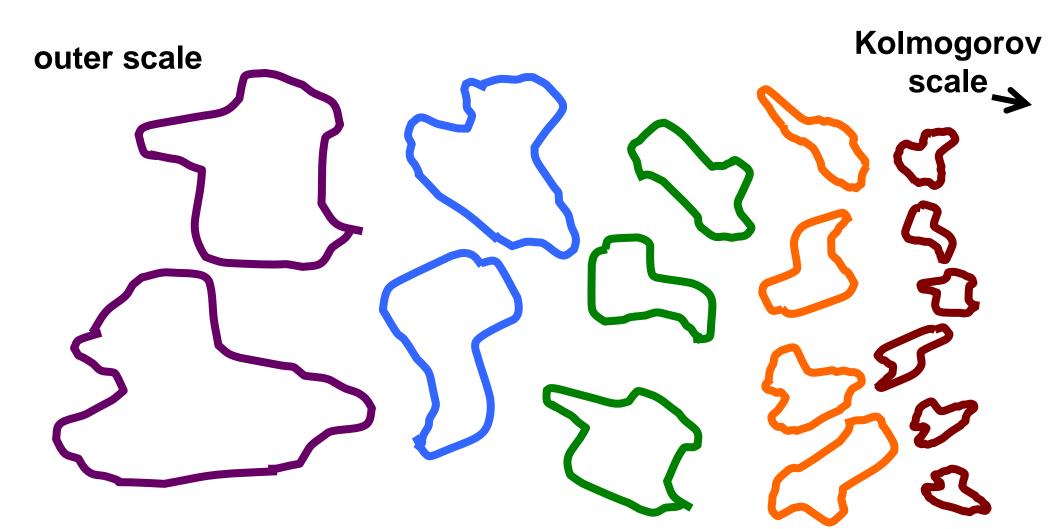
$$\ell_{\nu} = \ell_{\nu}(\nu, P_{\text{inj}})$$
 $\ell_{\nu} \sim \left(\frac{\rho\nu^{3}}{P_{\text{inj}}}\right)^{1/4} \sim L \text{Re}^{-3/4}$



Richardson's turbulence cascade

Big whorls have little whorls which feed on their velocity, And little whorls have lesser whorls and so on to viscosity.

```
L. F. Richardson
(1922)
```

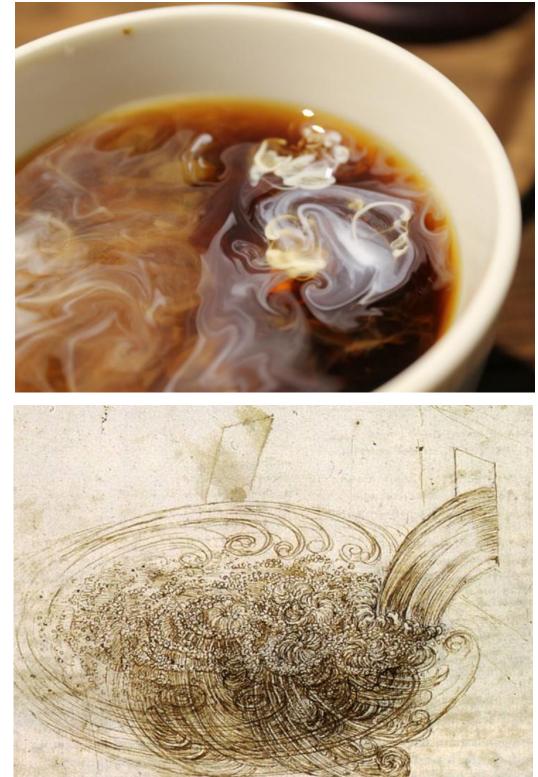


Kolmogorov's turbulence cascade

To proceed, make assumptions about turbulence properties:

• Universality (no special systems)

Universality



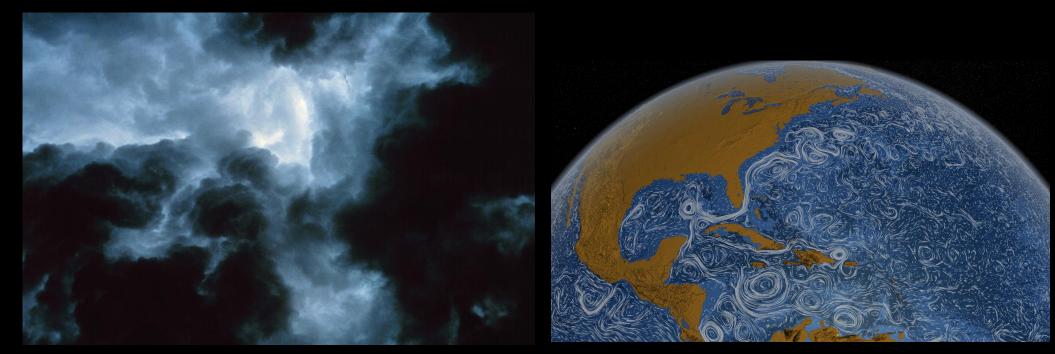
Kolmogorov's turbulence cascade

To proceed, make assumptions about turbulence properties:

- Universality (no special systems)
- Homogeneity (no special locations)
- Isotropy (no special directions)
- Locality (no special scales)

Any broken symmetries due to details of outer scale are restored in the inertial range

Homogeneous, isotropic, local

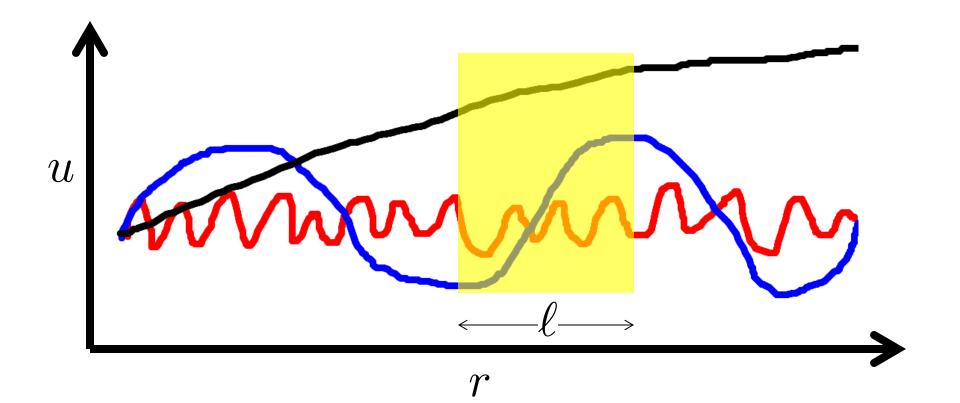


Credit: Steven Mathey

Kolmogorov's turbulence cascade

Want to know
$$\, \delta {f u}_{m \ell}({f r}) = {f u}({f r}+{m \ell}) - {f u}({f r})$$

= velocity 'increment'



Kolmogorov's turbulence cascade

Want to know $\, \delta \mathbf{u}_{\boldsymbol{\ell}}(\mathbf{r}) = \mathbf{u}(\mathbf{r} + \boldsymbol{\ell}) - \mathbf{u}(\mathbf{r}) \,$

Homogeneous + isotropic: $\delta u_{\ell} = u(r + \ell) - u(r)$

In statistical equilbrium, energy flux through each scale is scale-independent:

$$const = P_{inj} \sim P_{cascade} \sim \frac{\rho \delta u_{\ell}^2}{\tau_{\ell}}$$

Dimensional analysis: $\tau_{\ell} \sim \frac{\ell}{\delta u_{\ell}}$

 $\Rightarrow \delta u_\ell \propto \ell^{1/3}$

Kolmogorov's energy spectrum

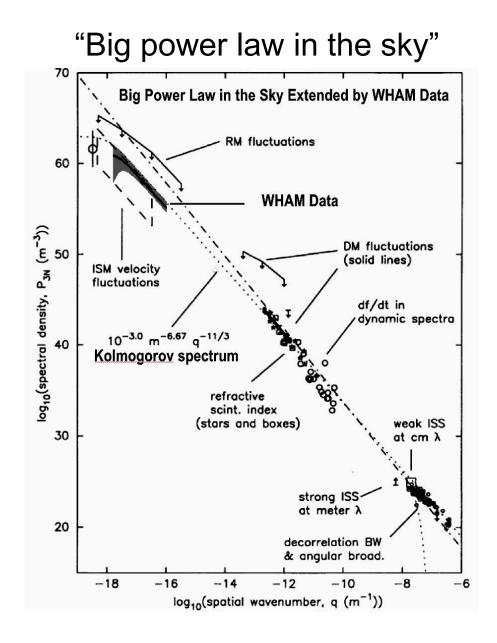
$$\delta u_\ell \propto \ell^{1/3}$$

$$\delta u_{\ell}^2 \sim \int_{1/\ell}^{\infty} dk E(k) \Rightarrow E(k) \propto k^{-5/3}$$

Kolmogorov's energy spectrum

$$E(k) \propto k^{-5/3}$$

Armstrong, Cordes, & Rickett, Nature (1981) + mods by Lazarian, et al., Space Sci. Rev (2012)



A small sample of active research areas

- Coherent structures
- Intermittency of dissipation
- Transition to turbulence
- Closure models and numerical simulations
- Multiphysics turbulence (chemistry + fluid dynamics + ...)
- Magnetized fluids (plasma)
- Beyond fluids: kinetic turbulence
- Much more...

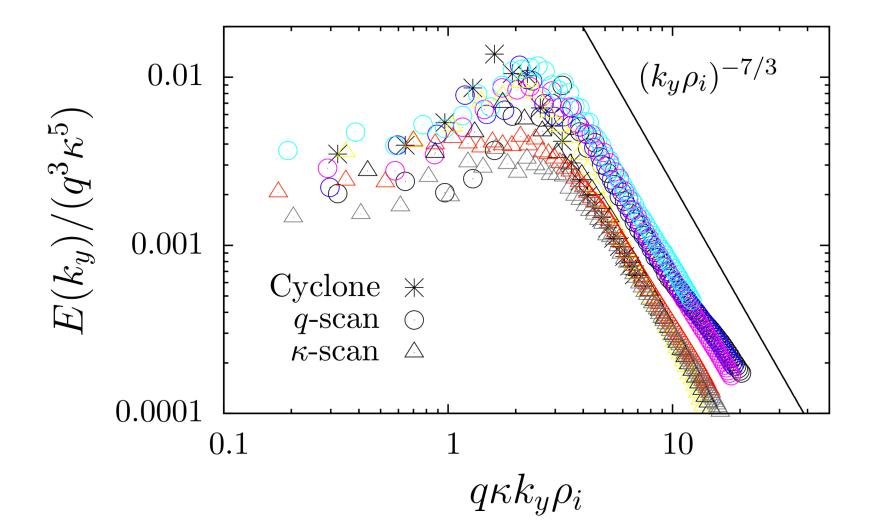
Turbulence in magnetized plasma and 'critical balance'

DIII-D Shot 121717

GYRO Simulation Cray XIE, 256 MSPs

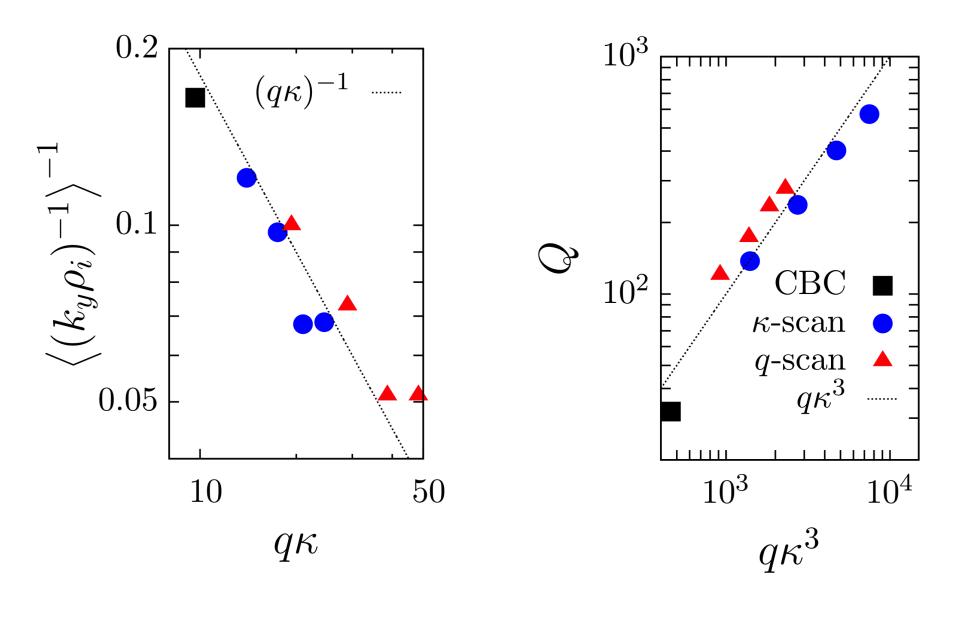
Credit: J. Candy General Atomics

Energy spectrum for critically balanced, kinetic turbulence



Barnes, Parra, & Schekochihin, Phys Rev Lett 2011

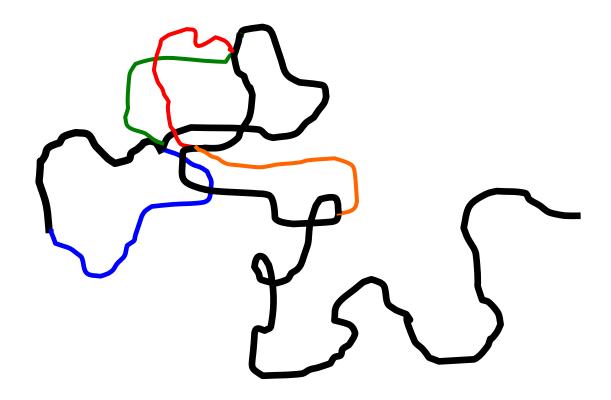
Energy confinement scalings



 $\kappa = R/L_T$

Barnes et al., PRL 2011

Turbulence and random walks



Random walk: (time to move move distance L) = (time per step) x (L/d)² steps

L = system size, d = eddy size, time per step = turbulence time

Viscosity and the Reynolds number

$$\frac{d\mathbf{u}}{dt} = -\frac{\nabla p}{\rho} + \nu \nabla^2 \mathbf{u} + \mathbf{f}$$

Non-dimensionalize: Multiply Navier-Stokes by $\frac{L}{U^2}$ and define

$$\tilde{\mathbf{u}} \doteq \frac{\mathbf{u}}{U}, \ \tilde{p} \doteq \frac{p}{\rho U^2}, \ \tilde{\mathbf{f}} \doteq \frac{\mathbf{f}L}{U^2}, \ \tilde{t} \doteq \frac{tL}{U}, \ \tilde{\nabla} \doteq L\nabla$$

$$\frac{d\tilde{\mathbf{u}}}{d\tilde{t}} = -\tilde{\nabla}\tilde{p} + \frac{1}{\mathrm{Re}}\tilde{\nabla}^{2}\tilde{\mathbf{u}} + \tilde{\mathbf{f}}$$

$$\operatorname{Re} \doteq \frac{UL}{\nu} = \frac{\text{inertial forces}}{\text{viscous forces}}$$